Protein synthesis, myosin ATPase activity and myofibrillar protein composition in hearts from tumour-bearing rats and mice

Author:

Drott C1,Lönnroth C1,Lundholm K1

Affiliation:

1. Department of Surgery, Institution I, University of Gothenburg, Sahlgrenska Hospital, S-413 45 Gothenburg, Sweden

Abstract

Growing rats and adult weight-stable mice bearing a transplantable methylcholanthrene-induced sarcoma were compared with animals with various states of malnutrition. Heart protein synthesis was measured in vivo. Myocardial RNA, myofibrillar protein composition and the Ca2+-activated ATPase activity in heavy chains of native myosin were measured. ‘Fingerprints’ were made from myosin by trypsin treatment to evaluate possible structural changes in the protein. Cardiac protein-synthesis rate was decreased by 20% in growing tumour-bearing rats, by 35% in protein-malnourished (rats) and by 47% in starved rats, compared with freely fed controls (P less than 0.05). Adult tumour-bearing mice showed no significant decrease in myocardial protein synthesis. Pair-weighed control mice had significantly depressed heart protein synthesis. Protein translational efficiency was maintained in both tumour-bearing rats and mice, but was decreased in several groups of malnourished control animals. The Ca2+-activated myosin ATPase activity was decreased in all groups of malnourished animals, including tumour-bearing mice and rats, without any evidence of a change in cardiac isomyosin composition. We conclude that loss of cardiac muscle mass in tumour disease is communicated by both depressed synthesis and increased degradation largely owing to anorexia and host malnutrition. Increased adrenergic sensitivity in hearts from tumour-bearing and malnourished animals is not communicated by increased Ca2+-activated ATPase activity. This may be down-regulated in all groups with malnutrition, without any observable alterations in the isomyosin profile.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3