Author:
Keene J L,Sweet F,Ruh M F,Ruh T S
Abstract
The high-affinity triarylethylene anti-oestrogen H1285 [4-(NN-diethylaminoethoxy)-beta-ethyl-alpha-(p-hydroxyphenyl) −4′-methoxystilbene] was tritiated to high specific radioactivity (35 Ci/mmol). Competition experiments between [3H]H1285 and H1285 or oestradiol demonstrated that both compounds would compete with [3H]H1285 for oestrogen-specific binding sites in rat uterine cytosol. [3H]H1285 had at least 10 times the affinity for the receptor compared with oestradiol at the 50% competition level. [3H]H1285 appeared to have at least twice the association rate for the oestrogen receptor compared with [3H]oestradiol. In addition, the dissociation half-life (t1/2) of specific binding of [3H]H1285 to oestrogen receptors at 0 degrees C was about 220 h compared with a value of 60 h for [3H]oestradiol. Because of the extremely slow dissociation of [3H]H1285 from the oestrogen receptor, we were able to compare the sedimentation profiles of [3H]H1285-receptor complexes with those of [3H]oestradiol-receptor complexes in the presence of 0.4 M-KCl on 5-20% sucrose density gradients. [3H]Oestradiol-receptor complexes had a major peak at 4.4 S with a smaller peak at 5.6 S, whereas with [3H]H1285-receptor complexes the 5.6 S peak was always higher than the 4.4 S peak. There was significant variation between the dissociation behaviour at 20 degrees C of [3H]H1285-receptor complexes and [3H]oestradiol-receptor complexes pre-activated at 25 degrees C for 30 min in the presence and in the absence of 10 mM-sodium molybdate. The dissociation t1/2 of [3H]oestradiol-receptor complexes at 20 degrees C decreased from 1.5 h to 0.5 h when molybdate was present during heat treatment whereas the dissociation t1/2 for [3H]H1285-receptor complexes was 5 h for both conditions. These observations indicate that there are fundamental differences in the initial interaction of H1285 and oestradiol with the oestrogen receptor.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献