Diabetes impairs arteriogenesis in the peripheral circulation: review of molecular mechanisms

Author:

Ruiter Matthijs S.1,van Golde Jolanda M.1,Schaper Nicolaas C.1,Stehouwer Coen D.1,Huijberts Maya S.1

Affiliation:

1. Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), 6200 MD Maastricht, The Netherlands

Abstract

Patients suffering from both diabetes and PAD (peripheral arterial disease) are at risk of developing critical limb ischaemia and ulceration, and potentially requiring limb amputation. In addition, diabetes complicates surgical treatment of PAD and impairs arteriogenesis. Arteriogenesis is defined as the remodelling of pre-existing arterioles into conductance vessels to restore the perfusion distal to the occluded artery. Several strategies to promote arteriogenesis in the peripheral circulation have been devised, but the mechanisms through which diabetes impairs arteriogenesis are poorly understood. The present review provides an overview of the current literature on the deteriorating effects of diabetes on the key players in the arteriogenesis process. Diabetes affects arteriogenesis at a number of levels. First, it elevates vasomotor tone and attenuates sensing of shear stress and the response to vasodilatory stimuli, reducing the recruitment and dilatation of collateral arteries. Secondly, diabetes impairs the downstream signalling of monocytes, without decreasing monocyte attraction. In addition, EPC (endothelial progenitor cell) function is attenuated in diabetes. There is ample evidence that growth factor signalling is impaired in diabetic arteriogenesis. Although these defects could be restored in animal experiments, clinical results have been disappointing. Furthermore, the diabetes-induced impairment of eNOS (endothelial NO synthase) strongly affects outward remodelling, as NO signalling plays a key role in several remodelling processes. Finally, in the structural phase of arteriogenesis, diabetes impairs matrix turnover, smooth muscle cell proliferation and fibroblast migration. The review concludes with suggestions for new and more sophisticated therapeutic approaches for the diabetic population.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3