Positional- and stereo-selectivity of fatty acid oxygenation catalysed by mouse (12S)-lipoxygenase isoenzymes

Author:

BÜRGER Friederike1,KRIEG Peter1,MARKS Friedrich1,FÜRSTENBERGER Gerhard

Affiliation:

1. Research Program Tumor Cell Regulation (B0500), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

Abstract

A quantitative stereochemical analysis of the products generated by recombinant mouse (12S)-lipoxygenase isoenzymes was performed with arachidonic acid and linoleic acid as substrates. The leucocyte-type (12S)-lipoxygenase generated, in addition to 12-hydroxyeicosatetraenoic acid (12-HETE) as the main product, 15- and 8-HETE from arachidonic acid and 13- and 9-hydroxyoctadecadienoic acid (13- and 9-HODE) from linoleic acid. The platelet-type enzyme oxygenated arachidonic acid to 12- and 8-HETE and linoleic acid to 13- and 9-HODE, whereas the epidermis-type (12S)-lipoxygenase reaction was essentially mono-specific with arachidonic acid but oxygenated linoleic acid to both 13- and 9-HODE. 12-HETE and 13-HODE were almost exclusively the S enantiomers. 8-HETE was the R enantiomer as a side-product of the platelet-type (12S)-lipoxygenase reaction but the S enantiomer as a side-product of the leucocyte-type reaction. 9-HODE was generated as the R enantiomer by the platelet-type and the epidermis-type isoenzymes and as the S enantiomer by the leucocyte-type (12S)-lipoxygenase. On the basis of published models of lipoxygenase-substrate interaction, the stereochemistry of the products generated by the platelet- and epidermis-type (12S)-lipoxygenases is in agreement with a fixed ‘tail-to-head’ orientation of the substrate fatty acid in the binding pocket of these enzymes, whereas that of the reaction products of the leucocyte-type (12S)-lipoxygenase can be explained only when the inverse orientation of the substrate or a rotational isomerism along the longitudinal axis of the substrate is allowed. Both the product spectra generated and the sensitivity towards the 12-lipoxygenase selective inhibitors N-benzyl-N-hydroxy-4-phenylpentanamide and cinnamyl-3,4-dihydroxy-α-cyanocinnamate indicated the platelet-type and the epidermis-type isoenzymes to be biochemically more related to each other than to the leucocyte-type (12S)-lipoxygenase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3