Determination of the structure of two novel echistatin variants and comparison of the ability of echistatin variants to inhibit aggregation of platelets from different species

Author:

Chen Y L1,Huang T F2,Chen S W1,Tsai I H1

Affiliation:

1. Institute of Biological Chemistry, Academia Sinica, P.O. Box 23-106, Taipei, Taiwan, Republic of China

2. Department of Pharmacology, National Taiwan University, Taipei, Taiwan, Republic of China

Abstract

Two new variants of short disintegrins were purified from the venom of Echis carinatus leakeyi and named echistatin beta and gamma. These proteins were found to be about 85% similar in amino acid sequence to echistatin alpha which has been well studied. The disulphide pattern of echistatin gamma appeared to be identical with that of echistatin alpha. They all contain the adhesive recognition sequence Arg-Gly-Asp (RGD) but inhibit the aggregation of platelets from human and other mammals with different potencies. Echistatin beta and alpha are far more effective on platelets from humans and guinea pigs than those from rabbits and rats whereas echistatin gamma is less discriminating of the platelets of the species tested. This species-dependent platelet sensitivity to echistatin beta and gamma could be attributed to the variations in residues 15, 21, 22 and 27, which are close to or within the RGD loop, rather than to the C-terminal variations after residue 46. Taking advantage of the presence of methionine residues flanking both sides of the ARGDDM motif in echistatin gamma, we deleted this hexapeptide by CNBr cleavage to produce des-(23-28)-echistatin gamma. The modified protein showed c.d. and fluorescent spectra grossly similar to the intact echistatin but its antiplatelet potency decreased more than 200-fold. We thus propose that a favourable conformation of the RGD region is responsible mainly for the high-affinity binding of echistatin to the platelet glycoprotein IIb-IIIa as shown previously for the binding of medium-size disintegrin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3