Intracellular copper deficiency increases amyloid-β secretion by diverse mechanisms

Author:

Cater Michael A.1,McInnes Kelly T.2,Li Qiao-Xin3,Volitakis Irene1,La Fontaine Sharon2,Mercer Julian F. B.2,Bush Ashley I.13

Affiliation:

1. Oxidation Biology Laboratory, Mental Health Research Institute of Victoria, Parkville, Victoria 3052, Australia

2. Centre for Cellular and Molecular Biology, Deakin University, Burwood, Victoria 3125, Australia

3. Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia

Abstract

In Alzheimer's disease there is abnormal brain copper distribution, with accumulation of copper in amyloid plaques and a deficiency of copper in neighbouring cells. Excess copper inhibits Aβ (amyloid β-peptide) production, but the effects of deficiency have not yet been determined. We therefore studied the effects of modulating intracellular copper levels on the processing of APP (amyloid precursor protein) and the production of Aβ. Human fibroblasts genetically disposed to copper accumulation secreted higher levels of sAPP (soluble APP ectodomain)α into their medium, whereas fibroblasts genetically manipulated to be profoundly copper deficient secreted predominantly sAPPβ and produced more amyloidogenic β-cleaved APP C-termini (C99). The level of Aβ secreted from copper-deficient fibroblasts was however regulated and limited by α-secretase cleavage. APP can be processed by both α- and β-secretase, as copper-deficient fibroblasts secreted sAPPβ exclusively, but produced primarily α-cleaved APP C-terminal fragments (C83). Copper deficiency also markedly reduced the steady-state level of APP mRNA whereas the APP protein level remained constant, indicating that copper deficiency may accelerate APP translation. Copper deficiency in human neuroblastoma cells significantly increased the level of Aβ secretion, but did not affect the cleavage of APP. Therefore copper deficiency markedly alters APP metabolism and can elevate Aβ secretion by either influencing APP cleavage or by inhibiting its degradation, with the mechanism dependent on cell type. Overall our results suggest that correcting brain copper imbalance represents a relevant therapeutic target for Alzheimer's disease.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3