ASIC1a activation induces calcium-dependent apoptosis of BMSCs under conditions that mimic the acidic microenvironment of the degenerated intervertebral disc

Author:

Cai Feng1ORCID,Hong Xin2,Tang Xiang3,Liu Nai-Cheng1,Wang Feng2,Zhu Lei2,Xie Xin-Hui2,Xie Zhi-Yang2,Wu Xiao-Tao2

Affiliation:

1. Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China

2. Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China

3. Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China

Abstract

Abstract Purpose: In the degenerated intervertebral disc (IVD), matrix acidity challenges transplanted bone marrow mesenchymal stem cells (BMSCs). The Ca2+-permeable acid-sensing ion channel 1a (ASIC1a) is responsible for acidosis-mediated tissue injury. The aim of our study was to confirm whether ASIC1a activation induces BMSC apoptosis under conditions that mimic the acidic microenvironment of the degenerated IVD. Methods: ASIC1a expression in rat BMSCs was investigated by real time-PCR, Western blot (WB) and immunofluorescence. The proliferation and apoptosis of BMSCs under acidic conditions were analyzed by MTT and TUNEL assays. Ca2+-imaging was used to assess the acid-induced increase in the intracellular Ca2+ concentration ([Ca2+]i). The activation of calpain and calcineurin was analyzed using specific kits, and WB analysis was performed to detect apoptosis-related proteins. Ultrastructural changes in BMSCs were observed using transmission electron microscopy (TEM). Results: Acid exposure led to the activation of ASIC1a and increased BMSC apoptosis. The Ca2+ imaging assay showed a significant increase in the [Ca2+]i in response to a solution at pH 6.0. However, BMSC apoptosis and [Ca2+]i elevation were alleviated in the presence of an ASIC1a inhibitor. Moreover, ASIC1a mediated the Ca2+ influx-induced activation of calpain and calcineurin in BMSCs. WB analysis and TEM revealed mitochondrial apoptosis, which was inhibited by an ASIC1a inhibitor, in BMSCs under acidic conditions. Conclusions: The mimical acidic microenvironment of the degenerated IVD can induce BMSC apoptosis by activating Ca2+-permeable ASIC1a. An acid-induced elevation of [Ca2+]i in BMSCs leads to the subsequent activation of calpain and calcineurin, further resulting in increased mitochondrial permeability and mitochondrial-mediated apoptosis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3