Aspects of organ protein, amino acid and glucose metabolism in a porcine model of hypermetabolic sepsis

Author:

BRUINS Maaike J.1,DEUTZ Nicolaas E.P.1,SOETERS Peter B.1

Affiliation:

1. Department of Surgery, Maastricht University, Maastricht, The Netherlands

Abstract

Although glucose and protein metabolism have been investigated extensively in experimental models of hypodynamic sepsis, relatively little information is available regarding the compensated stage of sepsis. We investigated interorgan amino acid and glucose metabolism in a porcine model of compensated hyperdynamic sepsis. Fasting catheterized pigs received endotoxin (Escherichia coli lipopolysaccharide; 3µg·h-1·kg-1; intravenous) or saline (controls) and volume resuscitation over 24h to reproduce hyperdynamic sepsis. Primed-constant infusions of p-aminohippurate and 3H-labelled isotopes were used to measure glucose, amino acid and protein metabolism across the portal-drained viscera, liver and hindquarters (to represent muscle) at 0 and 24h of endotoxaemia. Whole-body protein and glucose flux were increased during hyperdynamic compensated sepsis. In endotoxaemic pigs, visceral protein was conserved, and hindquarter protein breakdown exceeded the increase in liver protein synthesis, resulting in net whole-body protein loss. Endotoxaemia increased hindquarter and visceral glycolysis and branched-chain amino acid transamination. The rate of efflux of glutamine and alanine from the hindquarters was higher than anticipated from protein breakdown, indicating de novo synthesis of these amino acids during endotoxaemia. In addition to the hindquarters, the portal-drained viscera provided substantial gluconeogenic amino acids and lactate to the liver. Although increased liver glutamate release constitutes an important nitrogen-sparing mechanism and carbon skeletons are effectively being cycled in glucose, net body protein is lost through increased ureagenesis during the hyperdynamic stage of sepsis. Specific amino acid requirements may develop in compensated hyperdynamic sepsis that is characterized by maintained organ perfusion and increased substrate utilization at the expense of body protein.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calcium trafficking and gastrointestinal physiology following an acute lipopolysaccharide challenge in pigs;Journal of Animal Science;2024-01-01

2. The beneficial role of inflammation and metabolic cycling (Warburg revisited);Reciprocal Translation Between Pathophysiology and Practice in Health and Disease;2021

3. Insulin resistance as an adaptive mechanism;Reciprocal Translation Between Pathophysiology and Practice in Health and Disease;2021

4. Macronutrient metabolism in starvation and stress;Reciprocal Translation Between Pathophysiology and Practice in Health and Disease;2021

5. The benefit of moderate hyperglycemia and hyperlactatemia in critical illness or synthesis of biomass;Reciprocal Translation Between Pathophysiology and Practice in Health and Disease;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3