Homodimerization and isoform-specific heterodimerization of neuroligins

Author:

Poulopoulos Alexandros1,Soykan Tolga1,Tuffy Liam P.1,Hammer Matthieu1,Varoqueaux Frédérique1,Brose Nils1

Affiliation:

1. Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, and DFG Center for the Molecular Physiology of the Brain, D-37075 Göttingen, Germany

Abstract

Neuroligins are postsynaptic adhesion proteins involved in the establishment of functional synapses in the central nervous system. In rodents, four genes give rise to neuroligins that function at distinct synapses, with corresponding neurotransmitter and subtype specificities. In the present study, we examined the interactions between the different neuroligins by isolating endogenous oligomeric complexes using in situ cross-linking on primary neurons. Examining hippocampal, striatal, cerebellar and spinal cord cultures, we found that neuroligins form constitutive dimers, including homomers and, most notably, neuroligin 1/3 heteromers. Additionally, we found that neuroligin monomers are specifically retained in the secretory pathway through a cellular quality control mechanism that involves the neuroligin transmembrane domain, ensuring that dimerization occurs prior to cell surface trafficking. Lastly, we identified differences in the dimerization capacity of autism-associated neuroligin mutants, and found that neuroligin 3 R471C mutants can form heterodimers with neuroligin 1. The pervasive nature of neuroligin dimerization indicates that the unit of neuroligin function is the dimer, and raises intriguing possibilities of distinct heterodimer functions, and of interactions between native and mutant neuroligins contributing to disease phenotypes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3