Long-term plasticity of astrocytic phenotypes and their control by neurons in health and disease

Author:

Wardlaw Kyle S.12,Hardingham Giles E.12ORCID

Affiliation:

1. 1UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh EH16 4TJ, U.K.

2. 2Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, U.K.

Abstract

Abstract The brain is a complex organ even when viewed from a cell biological perspective. Neuronal networks are embedded in a dense milieu of diverse and specialised cell types, including several types of vascular, immune, and macroglial cells. To view each cell as a small cog in a highly complex machine is itself an oversimplification. Not only are they functionally coupled to enable the brain to operate, each cell type’s functions are themselves influenced by each other, in development, maturity, and also in disease. Astrocytes are a type of macroglia that occupy a significant fraction of the human forebrain. They play a critical role in sustaining functional neuronal circuits across the lifespan through myriad homeostatic functions including the maintenance of redox balance, ionic gradients, neurotransmitter clearance, and bioenergetic support. It is becoming apparent that astrocytes’ capacity to carry out these and other neurosupportive roles is not fixed, but is regulated by signals coming from the neurons themselves, both in the healthy brain but also in response to neuron-derived disease pathology. Here, we review mechanisms by which neurons control the properties of astrocytes long term in order to alter their homeostatic capacity both in development and maturity. Our working hypothesis is that these signals are designed to change and maintain the homeostatic capacity of local astrocytes to suit the needs of nearby neurons. Knowledge of the external signals that can control core aspects of a healthy astrocytic phenotype are being uncovered, raising the question as to whether this knowledge can be harnessed to promote astrocyte-mediated neurosupport in brain disorders.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3