A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5P and other phosphoinositides

Author:

Sarkes Deborah1,Rameh Lucia E.1

Affiliation:

1. Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, U.S.A.

Abstract

PtdIns5P was discovered in 1997 [Rameh, Tolias, Duckworth and Cantley (1997) Nature 390, 192–196], but still very little is known about its regulation and function. Hitherto, studies of PtdIns5P regulation have been hindered by the inability to measure cellular PtdIns5P using conventional HPLC, owing to poor separation from PtdIns4P. In the present paper we describe a new HPLC method for resolving PtdIns5P from PtdIns4P, which makes possible accurate measurements of basal and inducible levels of cellular PtdIns5P in the context of other phosphoinositides. Using this new method, we found that PtdIns5P is constitutively present in all cells examined (epithelial cells, fibroblasts and myoblasts, among others) at levels typically 1–2% of PtdIns4P levels. In the β-pancreatic cell line BTC6, which is specialized in insulin secretion, PtdIns5P levels were higher than in most cells (2.5–4% of PtdIns4P). Using subcellular fractionation, we found that the majority of the basal PtdIns5P is present in the plasma membrane, but it is also enriched in intracellular membrane compartments, especially in SER (smooth endoplasmic reticulum) and/or Golgi, where high levels of PtdIns3P were also detected. Unlike PtdIns3P, PtdIns5P was also found in fractions containing very-low-density vesicles. Knockdown of PIP4K (PtdIns5P 4-kinase) leads to accumulation of PtdIns5P in light fractions and fractions enriched in SER/Golgi, whereas treatment with Brefeldin A results in a subtle, but reproducible, change in PtdIns5P distribution. These results indicate that basal PtdIns5P and the PtdIns5P pathway for PtdIns(4,5)P2 synthesis may play a role in Golgi-mediated vesicle trafficking.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3