Biosynthesis of heparan sulfate in EXT1-deficient cells

Author:

Okada Megumi1,Nadanaka Satomi1,Shoji Naoko1,Tamura Jun-ichi2,Kitagawa Hiroshi1

Affiliation:

1. Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658–8558, Japan

2. Department of Regional Environment, Faculty of Regional Sciences, Tottori University, Japan

Abstract

HS (heparan sulfate) is synthesized by HS co-polymerases encoded by the EXT1 and EXT2 genes (exostosin 1 and 2), which are known as causative genes for hereditary multiple exostoses, a dominantly inherited genetic disorder characterized by multiple cartilaginous tumours. It has been thought that the hetero-oligomeric EXT1–EXT2 complex is the biologically relevant form of the polymerase and that targeted deletion of either EXT1 or EXT2 leads to a complete lack of HS synthesis. In the present paper we show, unexpectedly, that two distinct cell lines defective in EXT1 expression indeed produce small but significant amounts of HS chains. The HS chains produced without the aid of EXT1 were shorter than HS chains formed in concert with EXT1 and EXT2. In addition, biosynthesis of HS in EXT1-defective cells was notably blocked by knockdown of either EXT2 or EXTL2 (EXT-like), but not of EXTL3. Then, to examine the roles of EXTL2 in the biosynthesis of HS in EXT1-deficient cells, we focused on the GlcNAc (N-aetylglucosamine) transferase activity of EXTL2, which is involved in the initiation of HS chains by transferring the first GlcNAc to the linkage region. Although EXT2 alone synthesized no heparan polymers on the synthetic linkage region analogue GlcUAβ1-3Galβ1-O-C2H4NH-benzyloxycarbonyl, marked polymerization by EXT2 alone was demonstrated on GlcNAcα1-4GlcUAβ1-3Galβ1-O-C2H4N-benzyloxycarbonyl (where GlcUA is glucuronic acid and Gal is galactose), which was generated by transferring a GlcNAc residue using recombinant EXTL2 on to GlcUAβ1–3Galβ1-O-C2H4NH-benzyloxycarbonyl. These findings indicate that the transfer of the first GlcNAc residue to the linkage region by EXTL2 is critically required for the biosynthesis of HS in cells deficient in EXT1.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3