Acylation-stimulating protein (ASP): structure–function determinants of cell surface binding and triacylglycerol synthetic activity

Author:

MURRAY Ian1,KÖHL Jörg2,CIANFLONE Katherine1

Affiliation:

1. Mike Rosenbloom Laboratory for Cardiovascular Research, Royal Victoria Hospital, McGill University Health Center, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1

2. Institute of Medical Microbiology, Hannover Medical School, Hannover, Germany

Abstract

Acylation-stimulating protein (ASP or C3adesArg) is a potent lipogenic factor in human and murine adipocytes and fibroblasts. The arginated form of ASP, i.e. complement C3a (C3a), stimulates immunological responses in human granulocytes, mast cells, guinea pig platelets and guinea pig macrophages; however, ASP is inactive in stimulating these responses. Thus both ASP and C3a are bioactive across species but are not functionally interchangeable. Tertiary structure of both proteins by X-ray crystallography and NMR spectroscopy predicts a tightly linked core region consisting of three α-helices linked via three disulphide bonds, with one of the α-helices extending out from the core and terminating in a flexible conformationally irregular carboxy-tail region. The present studies were undertaken in order to define the functionally active domains of ASP, distinctive from those of C3a, using chemical modifications, enzymic cleavage and synthetic peptide fragments. The results indicate that: (i) the N-terminal region (< 10 amino acids) plays little role in ASP receptor binding and triacylglycerol synthesis stimulation; (ii) the native C-terminal region had no activity, but modifications which increased hydrophobicity increased receptor binding, and led to some activation of triacylglycerol synthesis stimulation; (iii) an intact disulphide-linked core region is essential for triacylglycerol synthesis stimulation activity but not for receptor interaction. Finally, basic charges in the carboxy region (His) are essential for ASP triacylglycerol synthesis stimulation but not for receptor binding, whereas both functions are eliminated by the modification of Lys in the disulphide-linked core region. The present results suggest that there are two functional domains in ASP, one that is responsible for the initial binding to the cell surface receptor, and a second domain that activates and increases triacylglycerol synthesis stimulation. This contrasts markedly with the structure-function studies of C3a where both binding competency and function were dependent on the C-terminal Arg. Thus ASP demonstrates distinct bioactivity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3