Affiliation:
1. Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
2. ActiveSight Inc., San Diego, CA 92121, U.S.A.
Abstract
The periplasmic iron-binding protein, FbpA (ferric-ion-binding protein A), performs an essential role in iron acquisition from transferrin in Haemophilus influenzae. A series of site-directed mutants in the metal-binding amino acids of FbpA were prepared to determine their relative contribution to iron binding and transport. Structural studies demonstrated that the mutant proteins crystallized in an open conformation with the iron atom associated with the C-terminal domain. The iron-binding properties of the mutant proteins were assessed by several assays, including a novel competitive iron-binding assay. The relative ability of the proteins to compete for iron was pH dependent, with a rank order at pH 6.5 of wild-type, Q58L, H9Q>H9A, E57A>Y195A, Y196A. The genes encoding the mutant FbpA were introduced into H. influenzae and the resulting strains varied in the level of ferric citrate required to support growth on iron-limited medium, suggesting a rank order for metal-binding affinities under physiological conditions comparable with the competitive binding assay at pH 6.5 (wild-type=Q58L>H9Q>H9A, E57A>Y195A, Y196A). Growth dependence on human transferrin was only obtained with cells expressing wild-type, Q58L or H9Q FbpAs, proteins with stability constants derived from the competition assay >2.0×1018 M−1. These results suggest that a relatively high affinity of iron binding by FbpA is required for removal of iron from transferrin and its transport across the outer membrane.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献