Electrospray ionization mass spectrometry as a method for studying the high-pressure denaturation of proteins

Author:

Stefanowicz Piotr1,Petry-Podgorska Inga1,Kowalewska Karolina1,Jaremko Lukasz1,Jaremko Mariusz1,Szewczuk Zbigniew1

Affiliation:

1. Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland

Abstract

High-pressure denaturation of proteins can provide important information concerning their folding and function. These studies require expensive and complicated equipment. In this paper, we present a new convenient method for studying high-pressure denaturation of proteins combining DHX (deuterium–hydrogen exchange) and electrospray ionization MS. Application of various values of pressure causes different degrees of protein unfolding resulting in molecules with a different number of protons available for exchange with deuterons. After decompression a protein refolds and a certain number of deuterons are trapped within the hydrophobic core of a refolded protein. Redissolving the deuterated protein in an aqueous buffer initiates the DHX of amides located on the protein surface only, which can be monitored under atmospheric pressure by MS. Depending on the degree of deuteration after high-pressure treatment, the DHX kinetics are different and indicate how many deuterons were trapped in the protein after refolding. The dependence of this number on pressure gives information on the denaturation state of a protein. The distribution of deuterium along the sequence of a high-pressure-denatured protein was studied the ECD (electron-capture-induced dissociation) on a Fourier-transform mass spectrometer, enabling the monitoring of high-pressure denaturation with single amino acid resolution.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Reference27 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3