E3 ubiquitin ligase-mediated regulation of vertebrate ocular development; new insights into the function of SIAH enzymes

Author:

Piedade Warlen Pereira1,Famulski Jakub K.2ORCID

Affiliation:

1. Department of Cardiology, Boston Children's Hospital, Harvard University, Boston, U.S.A.

2. Department of Biology, University of Kentucky, Kentucky, U.S.A.

Abstract

Developmental regulation of the vertebrate visual system has been a focus of investigation for generations as understanding this critical time period has direct implications on our understanding of congenital blinding disease. The majority of studies to date have focused on transcriptional regulation mediated by morphogen gradients and signaling pathways. However, recent studies of post translational regulation during ocular development have shed light on the role of the ubiquitin proteasome system (UPS). This rather ubiquitous yet highly diverse system is well known for regulating protein function and localization as well as stability via targeting for degradation by the 26S proteasome. Work from many model organisms has recently identified UPS activity during various milestones of ocular development including retinal morphogenesis, retinal ganglion cell function as well as photoreceptor homeostasis. In particular work from flies and zebrafish has highlighted the role of the E3 ligase enzyme family, Seven in Absentia Homologue (Siah) during these events. In this review, we summarize the current understanding of UPS activity during Drosophila and vertebrate ocular development, with a major focus on recent findings correlating Siah E3 ligase activity with two major developmental stages of vertebrate ocular development, retinal morphogenesis and photoreceptor specification and survival.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3