The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation

Author:

Dawson Anthony G.1,Chappell J. B.1

Affiliation:

1. Department of Biochemistry, Medical School, University of Bristol, Bristol BS8 1TD, U.K.

Abstract

1. The properties of membrane vesicles from the extreme thermophile Bacillus caldolyticus were investigated. 2. Vesicles prepared by exposure of spheroplasts to ultrasound contained cytochromes a, b and c, and at 50°C they rapidly oxidized NADH and ascorbate in the presence of tetramethyl-p-phenylenediamine. Succinate and l-malate were oxidized more slowly, and dl-lactate, l-alanine and glycerol 1-phosphate were not oxidized. 3. In the absence of proton-conducting uncouplers the oxidation of NADH was accompanied by a net translocation of H+ into the vesicles. Hydrolysis of ATP by a dicyclohexylcarbodi-imide-sensitive adenosine triphosphatase was accompanied by a similarly directed net translocation of H+. 4. Uncouplers (carbonyl cyanide p-trifluoromethoxyphenylhydrazone or valinomycin plus NH4+) prevented net H+ translocation but stimulated ATP hydrolysis, NADH oxidation and ascorbate oxidation. The last result suggested an energy-conserving site in the respiratory chain between cytochrome c and oxygen. 5. Under anaerobic conditions the reduction of cytochrome b by ascorbate (with tetramethyl-p-phenylenediamine) was stimulated by ATP hydrolysis, indicating an energy-conserving site between cytochrome b and cytochrome c. However, no reduction of NAD+ supported by oxidation of succinate, malate or ascorbate occurred, neither did it with these substrates in the presence of ATP under anaerobic conditions, suggesting that there was no energy-conserving site between NADH and cytochrome b. 6. Succinate oxidation, in contrast with that of NADH and ascorbate, was strongly inhibited by uncouplers and stimulated by ATP hydrolysis. These effects were not observed when phenazine methosulphate, which transfers electrons from succinate dehydrogenase directly to oxygen, was present. It was concluded that in these vesicles the oxidation of succinate was energy-dependent and that the reoxidation of reduced succinate dehydrogenase was dependent on the outward movement of H+ by the protonmotive force. 7. In support of the foregoing conclusion it was shown that the reduction of fumarate by NADH was an energy-conserving process. 8. If the activities of vesicles accurately represent those of the intact organism it appears that in B. caldolyticus the reduction of fumarate to succinate at the expense of reducing equivalents from NADH is energetically favoured over succinate oxidation even under aerobic conditions. This may be related to the need for an ample supply of succinate for haem synthesis in order to provide cytochromes for the organism.

Publisher

Portland Press Ltd.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3