Purification and characterization of an oxygen-stable form of dinitrogenase reductase-activating glycohydrolase from Rhodospirillum rubrum

Author:

Nielsen G M12,Bao Y23,Roberts G P23,Ludden P W12

Affiliation:

1. Department of Biochemistry, University of Wisconsin-Madison, WI 53706, U.S.A.

2. ‡Department of Bacteriology University of Wisconsin-Madison, WI 53706, U.S.A.

3. †Department of Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, WI 53706, U.S.A.

Abstract

Dinitrogenase reductase-activating glycohydrolase (DRAG) is responsible for removing the ADP-ribose moiety from post-translationally inactivated nitrogenase of Rhodospirillum rubrum. Using DRAG purified from an overexpressing strain (UR276), further properties of this enzyme were studied, including its u.v.-visible and fluorescence spectra and its stability in air. DRAG appears to require no covalently bound inorganic cofactors for its activity or regulation. Previously, purified DRAG was found to be rapidly inactivated in air. The air-catalysed lability originated with the presence of sodium dithionite and Mn2+ throughout the purification of the enzyme. This lability can be mimicked using H2O2, which is known to oxidatively inactivate proteins containing bivalent metals. Implications for the regulation of nitrogenase are discussed with respect to the lack of sensitivity to air of the regulatory enzyme, DRAG.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3