Dependence of mitochondrial and cytosolic adenine nucleotides on oxygen partial pressure in isolated hepatocytes. Application of a new rapid high pressure filtration technique for fractionation

Author:

Hummerich H1,de Groot H1,Noll T1,Soboll S1

Affiliation:

1. Institut für Physiologische Chemie I der Universität Düsseldorf, Moorenstrasse 5, 4000 Düsseldorf 1, Federal Republic of Germany

Abstract

By using a new rapid high pressure filtration technique, mitochondrial and cytosolic ATP and ADP contents were determined in isolated hepatocytes at different oxygen partial pressures. At 670 mmHg, subcellular adenine nucleotide contents and ATP/ADP ratios were comparable with values obtained with the digitonin fractionation technique. However at lower oxygen partial pressure ADP appears to be rephosphorylated during digitonin fractionation whereas with high pressure filtration fractionation rephosphorylation of ADP is avoided due to shorter fractionation times. Cytosolic and mitochondrial ATP/ADP ratios decrease if oxygen partial pressure is lowered. However the absolute values of ATP/ADP ratios depend critically on the incubation conditions. Thus incubation of hepatocytes in an oxystat system, where oxygen partial pressure is maintained constant by infusing oxygen-saturated medium and the hepatocyte suspension is continuously stirred, yields much higher subcellular and overall ATP/ADP ratios than incubation in Erlenmeyer flasks gassed with different gas mixtures and shaken in a water bath. This is ascribed to limited diffusion of oxygen from the medium into the cell if the suspension is not mixed thoroughly by stirring. The strong dependence of subcellular ATP/ADP ratios on incubation conditions indicates that oxygen may be one rate-controlling factor for oxidative phosphorylation in the intact cell.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3