Nature of the sedimentary rock record and its implications for Earth system evolution

Author:

Husson Jon M.1,Peters Shanan E.2

Affiliation:

1. School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada

2. Department of Geoscience, University of Wisconsin–Madison, Madison, WI, USA

Abstract

The sedimentary rock reservoir both records and influences changes in Earth's surface environment. Geoscientists extract data from the rock record to constrain long-term environmental, climatic and biological evolution, with the understanding that geological processes of erosion and rock destruction may have overprinted some aspects of their results. It has also long been recognized that changes in the mass and chemical composition of buried sediments, operating in conjunction with biologically catalyzed reactions, exert a first-order control on Earth surface conditions on geologic timescales. Thus, the construction and destruction of the rock record has the potential to influence both how Earth and life history are sampled, and drive long-term trends in surface conditions that otherwise are difficult to affect. However, directly testing what the dominant process signal in the sedimentary record is — rock construction or destruction — has rarely been undertaken, primarily due to the difficulty of assembling data on the mass and age of rocks in Earth's crust. Here, we present results on the chronological age and general properties of rocks and sediments in the Macrostrat geospatial database (https://macrostrat.org). Empirical patterns in surviving rock quantity as a function of age are indicative of both continual cycling (gross sedimentation) and long-term sediment accumulation (net sedimentation). Temporal variation in the net sedimentary reservoir was driven by major changes in the ability of continental crust to accommodate sediments. The implied history of episodic growth of sediment mass on continental crust has many attendant implications for the drivers of long-term biogeochemical evolution of Earth and life.

Publisher

Portland Press Ltd.

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference68 articles.

1. Occurrence of structurally preserved plants in pre-Cambrian rocks of the Canadian Shield;Tyler;Science,1954

2. Eukaryotic organisms in Proterozoic oceans;Knoll;Philos. Trans. R. Soc. B: Biol. Sci.,2006

3. Gregor's denudation of the continents;Garrels;Nature,1971

4. Devonian lithologic associations of the world;Ronov;Soviet Geol.,1954

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3