The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic–Phanerozoic transition

Author:

Lenton Timothy M.1,Daines Stuart J.1

Affiliation:

1. Earth System Science Group, College of Life and Environmental Sciences, University of Exeter, Exeter, U.K.

Abstract

A ‘Neoproterozoic oxygenation event’ is widely invoked as a causal factor in animal evolution, and often attributed to abiotic causes such as post-glacial pulses of phosphorus weathering. However, recent evidence suggests a series of transient ocean oxygenation events ∼660–520 Ma, which do not fit the simple model of a monotonic rise in atmospheric oxygen (pO2). Hence, we consider mechanisms by which the evolution of marine eukaryotes, coupled with biogeochemical and ecological feedbacks, potentially between alternate stable states, could have caused changes in ocean carbon cycling and redox state, phosphorus cycling and atmospheric pO2. We argue that the late Tonian ocean ∼750 Ma was dominated by rapid microbial cycling of dissolved organic matter (DOM) with elevated nutrient (P) levels due to inefficient removal of organic matter to sediments. We suggest the abrupt onset of the eukaryotic algal biomarker record ∼660–640 Ma was linked to an escalation of protozoan predation, which created a ‘biological pump’ of sinking particulate organic matter (POM). The resultant transfer of organic carbon (Corg) and phosphorus to sediments was strengthened by subsequent eukaryotic innovations, including the advent of sessile benthic animals and mobile burrowing animals. Thus, each phase of eukaryote evolution tended to lower P levels and oxygenate the ocean on ∼104 year timescales, but by decreasing Corg/P burial ratios, tended to lower atmospheric pO2 and deoxygenate the ocean again on ∼106 year timescales. This can help explain the transient nature and ∼106 year duration of oceanic oxygenation events through the Cryogenian–Ediacaran–Cambrian.

Publisher

Portland Press Ltd.

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3