Author:
Gietzen K,Tejcka M,Wolf H U
Abstract
The (Ca2+ + Mg2+)-dependent ATPase of human erythrocyte membranes was solubilized with deoxycholate and purified by calmodulin affinity chromatography to yield a functional enzyme. The method gave an enzyme purified 207-fold as compared with that of the erythrocyte membranes. The molecular weight of the ATPase was in the range 135 000-150 000, as revealed by a single major band after electrophoresis on dodecyl sulphate/polyacrylamide gels. The isolated enzyme was highly sensitive to calmodulin, since the activity was increased about 9-fold. At 37 degrees C and in the presence of calmodulin the purified ATPase had a specific activity of 10.1 mumol/min per mg of protein. Triton X-100 or deoxycholate stimulated the calmodulin-deficient enzyme in a concentration-dependent fashion whereby the calmodulin-sensitivity was lost. The purification method is suitable for studying the lipid-sensitivity of the ATPase, since the lipids can easily be exchanged without a significant loss of activity. A purification procedure described by Niggli, Penniston & Carafoli [(1979) J. Biol. Chem. 254, 9955-9958] resulted in an enzyme that indeed was pure but was lacking a predominant feature, namely the modulation by calmodulin.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献