Characterization of cathepsin S exosites that govern its elastolytic activity

Author:

Andrault Pierre-Marie12,Panwar Preety12,Brömme Dieter123ORCID

Affiliation:

1. Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada V6T1Z3

2. Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3

3. Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T1Z3

Abstract

We have previously determined that the elastolytic activities of cathepsins (Cat) K and V require two exosites sharing the same structural localization on both enzymes. The structural features involved in the elastolytic activity of CatS have not yet been identified. We first mutated the analogous CatK and V putative exosites of CatS into the elastolytically inactive CatL counterparts. The modification of the exosite 1 did not affect the elastase activity of CatS whilst mutation of the Y118 of exosite 2 decreased the cleavage of elastin by ∼70% without affecting the degradation of other macromolecular substrates (gelatin, thyroglobulin). T06, an ectosteric inhibitor that disrupt the elastolytic activity of CatK, blocked ∼80% of the elastolytic activity of CatS without blocking the cleavage of gelatin and thyroglobulin. Docking studies showed that T06 preferentially interacts with a binding site located on the Right domain of the enzyme, outside of the active site. The structural examination of this binding site showed that the loop spanning the L174N175G176K177 residues of CatS is considerably different from that of CatL. Mutation of this loop into the CatL-like equivalent decreased elastin degradation by ∼70% and adding the Y118 mutation brought down the loss of elastolysis to ∼80%. In addition, the Y118 mutation selectively reduced the cleavage of the basement membrane component laminin by ∼50%. In summary, our data show that the degradation of elastin by CatS requires two exosites where one of them is distinct from those of CatK and V whilst the cleavage of laminin requires only one exosite.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3