Affiliation:
1. School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K.
Abstract
Bacillus thuringiensis (Bt) is a gram positive spore forming bacterium which produces intracellular protein crystals toxic to a wide variety of insect larvae and is the most commonly used biological pesticide worldwide. More recently, Bt crystal proteins known as parasporins have been discovered, that have no known insecticidal activity but target some human cancer cells exhibiting strong cytocidal activities with different toxicity spectra and varied activity levels. Parasporin-3, also called Cry41Aa, has only been shown to exhibit cytocidal activity towards HL-60 (Human promyelocytic leukemia cells) and HepG2 (Human liver cancer cells) cell lines after being proteolytically cleaved. In order to understand this activation mechanism various mutations were made in the N-terminal region of the protein and the toxicity against both HepG2 and HL-60 cell lines was evaluated. Our results indicate that only N-terminal cleavage is required for activation and that N-terminally deleted mutants show some toxicity without the need for proteolytic activation. Furthermore, we have shown that the level of toxicity towards the two cell lines depends on the protease used to activate the toxin. Proteinase K-activated toxin was significantly more toxic towards HepG2 and HL-60 than trypsin-activated toxin. N-terminal sequencing of activated toxins showed that this difference in toxicity is associated with a difference of just two amino acids (serine and alanine at positions 59 and 60, respectively) which we hypothesize occlude a binding motif.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献