Desialylation by Edwardsiella tarda is the initial step in the regulation of its invasiveness

Author:

Vo Linh Khanh12,Tsuzuki Toshiharu1,Kamada-Futagami Yuko1,Chigwechokha Petros Kingstone23,Honda Akinobu2,Oishi Kazuki2,Komatsu Masaharu12,Shiozaki Kazuhiro12ORCID

Affiliation:

1. Faculty of Fisheries, Kagoshima University, Kagoshima, Japan

2. The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan

3. Department of Biological Sciences, Malawi University of Science and Technology, Thylo, Malawi

Abstract

Abstract Edwardsiella tarda is a gram-negative bacterium causing significant economic losses to aquaculture. E. tarda possesses NanA sialidase which removes sialic acids from α2–3 sialo-glycoprotein of host cells. However, the relationship between NanA sialidase activity and E. tarda invasiveness remains poorly understood. Furthermore, the pathway of sialic acid metabolism in E. tarda remains to be elucidated. We studied sialidase activity in several E. tarda strains and found that the pathogenic strains exhibited higher sialidase activity and greater up-regulation of the NanA mRNA level than non-pathogenic strain. Pathogenic strains also showed higher rates of infection in GAKS cells, and the infection was drastically suppressed by sialidase inhibitor. Additionally, NanA gene overexpression significantly increased infection and treatment of E. tarda with free sialic acid enhanced the rate of infection in GAKS cells. Sialic acid treatment enhanced mRNA levels of two N-acetylneuraminate lyases and one N-acetylneuraminate cytidylyltransferase. E. tarda uses sialic acid as a carbon source for growth via N-acetylneuraminate lyases. The strains with high N-acetylneuraminate cytidylyltransferase level showed greater sialylation of the lipopolysaccharides and glycoproteins. Our study establishes the significance of desialylation by E. tarda sialidase in the regulation of its invasiveness.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3