Amelioration of heavy metal stress by endophytic Bacillus amyloliquefaciens RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation

Author:

Shahzad Raheem12ORCID,Bilal Saqib3,Imran Muhammad3,Khan Abdul Latif4,Alosaimi Areej Ahmed12,Al-Shwyeh Hussah Abdullah12,Almahasheer Hanan12,Rehman Suriya5,Lee In-Jung3ORCID

Affiliation:

1. Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, PO Box 1982, 31441 Dammam, Saudi Arabia

2. Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, PO Box 1982, 31441 Dammam, Saudi Arabia

3. School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, South Korea

4. Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman

5. Department of Epidemic Disease Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, PO Box 1982, 31441 Dammam, Saudi Arabia

Abstract

This study aimed to investigate the bioremediation efficiency of phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 isolated from rice seeds. In this study, we tested RWL-1 against various heavy metals (Cu, Cr, Pb, and Cd). Among the tested heavy metals, RWL-1 showed the highest tolerance for Cu stress and we observed alterations in growth kinetics with various Cu concentrations (1, 2.5, and 5 mM). We confirmed the biosorption potential of RWL-1 by scanning electron microscopy coupled with energy-dispersive X-ray spectrometry showing that Cu ions were adsorbed on RWL-1 cell surfaces. We further tested RWL-1 for its plant growth promoting and stress reliance efficiency in response to a dose-dependent increase in soil Cu (1, 2.5, and 5 mM). The RWL-1 inoculation significantly increased seedling biomass and growth attributes compared with non-inoculated control seedlings with and without Cu stress. Moreover, RWL-1 inoculation significantly promoted a physiochemical response in seedlings with and without Cu stress by reducing Cu uptake, improving carbohydrate levels (glucose, sucrose, fructose, and raffinose), enhancing amino acids regulation, and augmenting antioxidant levels (POD, PPO, and GHS). Levels of stress-responsive phytohormones such as abscisic acid (ABA) and jasmonic acid were significantly reduced in RWL-1-inoculated seedlings as compared with non-inoculated control seedlings under normal condition and same levels of Cu stress. In conclusion, the inoculation of B. amyloliquefaciens RWL-1 can significantly improve plant growth in Cu-contaminated soil and reduce metal accumulation, thus making plants safer for consumption. This approach could be tremendously helpful for safe and sustainable agriculture in heavy metal-contaminated areas.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3