Biochemical and structural investigation of taurine:2-oxoglutarate aminotransferase from Bifidobacterium kashiwanohense

Author:

Li Mengya1,Wei Yifeng2,Yin Jinyu1,Lin Lianyun1,Zhou Yan1,Hua Gaoqun1,Cao Peng3,Ang Ee Lui2,Zhao Huimin24,Yuchi Zhiguang1,Zhang Yan1ORCID

Affiliation:

1. Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China

2. Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore

3. Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China

4. Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, U.S.A.

Abstract

Abstract Taurine aminotransferases catalyze the first step in taurine catabolism in many taurine-degrading bacteria and play an important role in bacterial taurine metabolism in the mammalian gut. Here, we report the biochemical and structural characterization of a new taurine:2-oxoglutarate aminotransferase from the human gut bacterium Bifidobacterium kashiwanohense (BkToa). Biochemical assays revealed high specificity of BkToa for 2-oxoglutarate as the amine acceptor. The crystal structure of BkToa in complex with pyridoxal 5′-phosphate (PLP) and glutamate was determined at 2.7 Å resolution. The enzyme forms a homodimer, with each monomer exhibiting a typical type I PLP-enzyme fold and conserved PLP-coordinating residues interacting with the PLP molecule. Two glutamate molecules are bound in sites near the predicted active site and they may occupy a path for substrate entry and product release. Molecular docking reveals a role for active site residues Trp21 and Arg156, conserved in Toa enzymes studied to date, in interacting with the sulfonate group of taurine. Bioinformatics analysis shows that the close homologs of BkToa are also present in other anaerobic gut bacteria.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3