Affiliation:
1. University of Guelph, Guelph, Canada
2. Federal University of Santa Catarina, Florianopolis, Brazil
Abstract
Abstract
Branched-chain keto acids (BCKA) metabolism involves several well-regulated steps within mitochondria, requires cofactors, and is modulated according to the metabolic status of the cells. This regulation has made it challenging to utilize in vitro approaches to determine the contribution of branched-chain amino acid oxidation to energy production. These methodological issues were elegantly addressed in a recent publication within the Biochemical Journal. In this issue, Goldberg et al. [Biochem. J. (2019) 476, 1521–1537] demonstrated in a well-designed system the dependence of ATP and bicarbonate for BCKA full oxidation. In addition, the utilized system allowed the authors to characterize specific biochemical routes within mitochondria for each BCKA. Among them, a quantitative analysis of the participation of BCKA on mitochondrial flux was estimated between tissues. These findings are milestones with meaningful impact in several fields of metabolism.
Subject
Cell Biology,Molecular Biology,Biochemistry