The origin, evolution and diversification of multiple isoforms of light-dependent protochlorophyllide oxidoreductase (LPOR): focus on angiosperms

Author:

Gabruk Michal1ORCID,Mysliwa-Kurdziel Beata1

Affiliation:

1. Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland

Abstract

Light-dependent protochlorophyllide oxidoreductase (LPOR) catalyzes the reduction of protochlorophyllide to chlorophyllide, which is a key reaction for angiosperm development. Dark operative light-independent protochlorophyllide oxidoreductase (DPOR) is the other enzyme able to catalyze this reaction, however, it is not present in angiosperms. LPOR, which evolved later than DPOR, requires light to trigger the reaction. The ancestors of angiosperms lost DPOR genes and duplicated the LPORs, however, the LPOR evolution in angiosperms has not been yet investigated. In the present study, we built a phylogenetic tree using 557 nucleotide sequences of LPORs from both bacteria and plants to uncover the evolution of LPOR. The tree revealed that all modern sequences of LPOR diverged from a single sequence ∼1.36 billion years ago. The LPOR gene was then duplicated at least 10 times in angiosperms, leading to the formation of two or even more LPOR isoforms in multiple species. In the case of Arabidopsis thaliana, AtPORA and AtPORB originated in one duplication event, in contrary to the isoform AtPORC, which diverged first. We performed biochemical characterization of these isoforms in vitro, revealing differences in the lipid-driven properties. The results prone us to hypothesize that duplication events of LPOR gave rise to the isoforms having different lipid-driven activity, which may predispose them for functioning in different locations in plastids. Moreover, we showed that LPOR from Synechocystis operated in the lipid-independent manner, revealing differences between bacterial and plant LPORs. Based on the presented results, we propose a novel classification of LPOR enzymes based on their biochemical properties and phylogenetic relationships.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3