Tracking biochemical changes induced by iron loading in AML12 cells with synchrotron live cell, time-lapse infrared microscopy

Author:

Kidman Clinton J.12,Mamotte Cyril D.S.12,Eynaud M. Adrien2,Reinhardt Juliane3,Vongsvivut Jitraporn3,Tobin Mark J.3,Hackett Mark J.24,Graham Ross M.12ORCID

Affiliation:

1. School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia 6102, Australia

2. Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia

3. ANSTO — Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia

4. School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia

Abstract

Hepatocytes are essential for maintaining the homeostasis of iron and lipid metabolism in mammals. Dysregulation of either iron or lipids has been linked with serious health consequences, including non-alcoholic fatty liver disease (NAFLD). Considered the hepatic manifestation of metabolic syndrome, NAFLD is characterised by dysregulated lipid metabolism leading to a lipid storage phenotype. Mild to moderate increases in hepatic iron have been observed in ∼30% of individuals with NAFLD; however, direct observation of the mechanism behind this increase has remained elusive. To address this issue, we sought to determine the metabolic consequences of iron loading on cellular metabolism using live cell, time-lapse Fourier transform infrared (FTIR) microscopy utilising a synchrotron radiation source to track biochemical changes. The use of synchrotron FTIR is non-destructive and label-free, and allowed observation of spatially resolved, sub-cellular biochemical changes over a period of 8 h. Using this approach, we have demonstrated that iron loading in AML12 cells induced perturbation of lipid metabolism congruent with steatosis development. Iron-loaded cells had approximately three times higher relative ester carbonyl concentration compared with controls, indicating an accumulation of triglycerides. The methylene/methyl ratio qualitatively suggests the acyl chain length of fatty acids in iron-loaded cells increased over the 8 h period of monitoring compared with a reduction observed in the control cells. Our findings provide direct evidence that mild to moderate iron loading in hepatocytes drives de novo lipid synthesis, consistent with a role for iron in the initial hepatic lipid accumulation that leads to the development of hepatic steatosis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3