Structure-based drug repurposing to inhibit the DNA gyrase of Mycobacterium tuberculosis

Author:

GL Balasubramani1,Rajput Rinky1,Gupta Manish2,Dahiya Pradeep3,Thakur Jitendra K.3,Bhatnagar Rakesh24,Grover Abhinav1ORCID

Affiliation:

1. School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India

2. Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India

3. Plant Mediator Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067 India

4. Banaras Hindu University, Banaras, Uttar Pradesh 221005, India

Abstract

Drug repurposing is an alternative avenue for identifying new drugs to treat tuberculosis (TB). Despite the broad-range of anti-tubercular drugs, the emergence of multi-drug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb) H37Rv, as well as the significant death toll globally, necessitates the development of new and effective drugs to treat TB. In this study, we have employed a drug repurposing approach to address this drug resistance problem by screening the drugbank database to identify novel inhibitors of the Mtb target enzyme, DNA gyrase. The compounds were screened against the ATPase domain of the gyrase B subunit (MtbGyrB47), and the docking results showed that echinacoside, doxorubicin, epirubicin, and idarubicin possess high binding affinities against MtbGyrB47. Comprehensive assessment using fluorescence spectroscopy, surface plasmon resonance spectroscopy (SPR), and circular dichroism (CD) titration studies revealed echinacoside as a potent binder of MtbGyrB47. Furthermore, ATPase, and DNA supercoiling assays exhibited an IC50 values of 2.1–4.7 µM for echinacoside, doxorubicin, epirubicin, and idarubicin. Among these compounds, the least MIC90 of 6.3 and 12 μM were observed for epirubicin and echinacoside, respectively, against Mtb. Our findings indicate that echinacoside and epirubicin targets mycobacterial DNA gyrase, inhibit its catalytic cycle, and retard mycobacterium growth. Further, these compounds exhibit potential scaffolds for optimizing novel anti-mycobacterial agents that can act on drug-resistant strains.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3