The SGLT2 inhibitor canagliflozin suppresses lipid synthesis and interleukin-1 beta in ApoE deficient mice

Author:

Day Emily A.1,Ford Rebecca J.1,Lu Jessie H.1,Lu Rachel1,Lundenberg Lucie1,Desjardins Eric M.1,Green Alex E.1,Lally James S.V.1,Schertzer Jonathan D.12ORCID,Steinberg Gregory R.12

Affiliation:

1. Department of Medicine, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada

2. Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada

Abstract

Sodium-glucose cotransporter 2 inhibitors such as canagliflozin lower blood glucose and reduce cardiovascular events in people with type 2 diabetes through mechanisms that are not fully understood. Canagliflozin has been shown to increase the activity of the AMP-activated protein kinase (AMPK), a metabolic energy sensor important for increasing fatty acid oxidation and energy expenditure and suppressing lipogenesis and inflammation, but whether AMPK activation is important for mediating some of the beneficial metabolic effects of canagliflozin has not been determined. We, therefore, evaluated the effects of canagliflozin in female ApoE−/− and ApoE−/−AMPK β1−/− mice fed a western diet. Canagliflozin increased fatty acid oxidation and energy expenditure and lowered adiposity, blood glucose and the respiratory exchange ratio independently of AMPK β1. Canagliflozin also suppressed liver lipid synthesis and the expression of ATP-citrate lyase, acetyl-CoA carboxylase and sterol response element-binding protein 1c independently of AMPK β1. Canagliflozin lowered circulating IL-1β and studies in bone marrow-derived macrophages indicated that in contrast with the metabolic adaptations, this effect required AMPK β1. Canagliflozin had no effect on the size of atherosclerotic plaques in either ApoE−/− and ApoE−/−AMPK β1−/− mice. Future studies investigating whether reductions in liver lipid synthesis and macrophage IL-1β are important for the cardioprotective effects of canagliflozin warrant further investigation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3