Merkel cell polyomavirus small tumour antigen activates the p38 MAPK pathway to enhance cellular motility

Author:

Dobson Samuel J.12,Anene Anthony3,Boyne James R.4,Mankouri Jamel12,Macdonald Andrew12,Whitehouse Adrian12ORCID

Affiliation:

1. School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.

2. Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.

3. Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1 M 6BQ, U.K.

4. School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.

Abstract

Merkel cell carcinoma (MCC) is an aggressive skin cancer with high rates of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases. MCPyV-induced tumourigenesis is largely dependent on the expression of the small tumour antigen (ST). Recent findings implicate MCPyV ST expression in the highly metastatic nature of MCC by promoting cell motility and migration, through differential expression of cellular proteins that lead to microtubule destabilisation, filopodium formation and breakdown of cell–cell junctions. However, the molecular mechanisms which dysregulate these cellular processes are yet to be fully elucidated. Here, we demonstrate that MCPyV ST expression activates p38 MAPK signalling to drive cell migration and motility. Notably, MCPyV ST-mediated p38 MAPK signalling occurs through MKK4, as opposed to the canonical MKK3/6 signalling pathway. In addition, our results indicate that an interaction between MCPyV ST and the cellular phospatase subunit PP4C is essential for its effect on p38 MAPK signalling. These results provide novel opportunities for the treatment of metastatic MCC given the intense interest in p38 MAPK inhibitors as therapeutic agents.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3