Interrogation of 3D-swapped structure and functional attributes of quintessential Sortase A from Streptococcus pneumoniae

Author:

Biswas Tora1,Misra Anurag2,Das Sreetama2,Yadav Prity1,Ramakumar Suryanarayanarao2,Roy Rajendra P.1ORCID

Affiliation:

1. National Institute of Immunology, Delhi 110067, India

2. Department of Physics, Indian Institute of Science, Bangalore 560012, India

Abstract

The anchoring of the surface proteins to the cell wall in gram-positive bacteria involves a peptide ligation reaction catalyzed by transpeptidase sortase. Most bacterial genomes encode multiple sortases with dedicated functions. Streptococcus pneumoniae (Sp) carries four sortases; a housekeeping sortase (SrtA), and three pilin specific sortases (SrtC1, C2, C3) dedicated to the biosynthesis of covalent pilus. Interestingly, SrtA, meant for performing housekeeping roles, is also implicated in pilus assembly of Sp. The allegiance of SpSrtA to the pathogenic pilus assembly makes it an ideal target for clinical inhibitor development. In this paper, we describe biochemical characterization, crystal structure and peptide substrate preference of SpSrtA. Transpeptidation reaction with a variety of substrates revealed that the enzyme preferred elongated LPXTG sequences and transferred them equally well to both Ala- and Gly-terminated peptides. Curiously, the crystal structure of both wild type and an active site (Cys to Ala) mutant of SpSrtA displayed inter-twined 3D-swapped dimers in which each protomer generated a classic eight-stranded beta-barrel ‘sortase fold'. Size-exclusion chromatography and sedimentation equilibrium measurements revealed the predominant presence of a dimer in equilibrium with its monomer. The crystal structure-based Cys–Cys distance mapping with defined chemical cross-linkers established the existence of 3D-swapped structure in solution. The swapping in SpSrtA, unprecedented for sortase family, may be physiologically relevant and meant to perform regulatory functions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3