RORα phosphorylation by casein kinase 1α as glucose signal to regulate estrogen sulfation in human liver cells

Author:

Hu Hao1,Negishi Masahiko1ORCID

Affiliation:

1. Pharmacogenetics, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, U.S.A.

Abstract

Estrogen sulfotransferase (SULT1E1) metabolically inactivates estrogen and SULT1E1 expression is tightly regulated by multiple nuclear receptors. Human fetal, but not adult, livers express appreciable amounts of SULT1E1 protein, which is mimicked in human hepatoma-derived HepG2 cells cultured in high glucose (450 mg/dl) medium. Here, we have investigated this glucose signal that leads to phosphorylation of nuclear receptor RORα (NR1F1) at Ser100 and the transcription mechanism by which phosphorylated RORα transduces this signal to nuclear receptor HNF4α, activating the SULT1E1 promoter. The promoter is repressed by non-phosphorylated RORα which binds a distal enhancer (−943/−922 bp) and interacts with and represses HNF4α-mediated transcription. In response to high glucose, RORα becomes phosphorylated at Ser100 and reverses its repression of HNF4α promoter activation. Moreover, the casein kinase CK1α, which is identified in an enhancer-bound nuclear protein complex, phosphorylates Ser100 in in vitro kinase assays. During these dynamic processes, both RORα and HNF4α remain on the enhancer. Thus, RORα utilizes phosphorylation to integrate HNF4α and transduces the glucose signal to regulate the SULT1E1 gene in HepG2 cells and this phosphorylation-mediated mechanism may also regulate SULT1E1 expressions in the human liver.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3