Recognition of DNA alterations by the mismatch repair system

Author:

MARRA Giancarlo1,SCHÄR Primo1

Affiliation:

1. Institute for Medical Radiobiology, August Forel-Strasse 7, CH-8029 Zürich, Switzerland

Abstract

Misincorporation of non-complementary bases by DNA polymerases is a major source of the occurrence of promutagenic base-pairing errors during DNA replication or repair. Base–base mismatches or loops of extra bases can arise which, if left unrepaired, will generate point or frameshift mutations respectively. To counteract this mutagenic potential, organisms have developed a number of elaborate surveillance and repair strategies which co-operate to maintain the integrity of their genomes. An important replication-associated correction function is provided by the post-replicative mismatch repair system. This system is highly conserved among species and appears to be the major pathway for strand-specific elimination of base–base mispairs and short insertion/deletion loops (IDLs), not only during DNA replication, but also in intermediates of homologous recombination. The efficiency of repair of different base-pairing errors in the DNA varies, and appears to depend on multiple factors, such as the physical structure of the mismatch and sequence context effects. These structural aspects of mismatch repair are poorly understood. In contrast, remarkable progress in understanding the biochemical role of error-recognition proteins has been made in the recent past. In eukaryotes, two heterodimers consisting of MutS-homologous proteins have been shown to share the function of mismatch recognition in vivo and in vitro. A first MutS homologue, MSH2, is present in both heterodimers, and the specificity for mismatch recognition is dictated by its association with either of two other MutS homologues: MSH6 for recognition of base–base mismatches and small IDLs, or MSH3 for recognition of IDLs only. Mismatch repair deficiency in cells can arise through mutation, transcriptional silencing or as a result of imbalanced expression of these genes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3