Proteases of the complement system

Author:

Sim R.B.1,Tsiftsoglou S.A.1

Affiliation:

1. MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, U.K.

Abstract

The complement system is a group of about 35 soluble and cell-surface proteins which interact to recognize, opsonize and clear or kill invading micro-organisms or altered host cells (e.g. apoptotic or necrotic cells). Complement is a major part of the innate immune system. Recognition proteins such as C1q, MBL (mannan-binding lectin) and ficolins bind to targets via charge or sugar arrays. Binding causes activation of a series of serine protease proenzymes, such as C1r, C1s and MASP2 (MBL-associated serine protease 2), which in turn activate the atypical serine proteases factor B and C2, which then activate the major opsonin of the system, C3. Activated C3 binds covalently to targets, and is recognized by receptors on phagocytic cells. Two of the complement proteases, factors D and I, circulate not as proenzymes, but in activated form, and they have no natural inhibitors; their substrates are transient protein complexes (e.g. C3bB and C3bH) which form during complement activation. Factor B and C2 also have no natural inhibitor; they are active only when proteolytically cleaved and bound in an unstable, short-lived complex with C3b or C4b. C1r, C1s and the MASPs, in contrast, are regulated more conventionally by the natural serpin, C1-inhibitor. Complement proteases in general have very narrow specificity, and low substrate turnover with both natural and synthetic substrates. Excessive activation of complement is inflammatory, and causes tissue damage (e.g. in rheumatoid arthritis, or in ischaemia/reperfusion injury). Substances that regulate complement activation are likely to be useful in the regulation of inflammation. Complement activation might potentially be controlled at many different steps. Much attention has been focused on controlling the formation or activity of the protease complexes C3bBb and C4b2a (containing activated factor B and C2 respectively), as these generate the inflammatory peptides C3a and C5a.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3