Affiliation:
1. Department of Biochemistry, University of Adelaide, Adelaide, South Australia 5000, Australia
2. Division of Clinical Chemistry, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000, Australia
Abstract
Inactivation of chicken liver pyruvate carboxylase by the chelating agent 1,10-phenanthroline follows pseudo-first-order kinetics. The hyperbolic dependence of the apparent first-order rate constant on 1,10-phenanthroline concentration is consistent with a two-step inactivation mechanism, in which 1,10-phenanthroline binds firstly to the enzyme, and secondly to the enzyme-bound Mn(II) ion. Binding of 1,10-phenanthroline to pyruvate carboxylase results in complete loss of ATP/Pi exchange activity, but only a 61% decrease in pyruvate/oxaloacetate exchange activity. The rate of inactivation is greater at low enzyme concentrations, implying that binding of 1,10-phenanthroline to monomers and dimers is preferred relative to that of tetramers. Furthermore, in the presence of acetyl-CoA, which stabilizes the tetrameric structure, no dependence of inactivation on enzyme concentration is observed. As monitored by gel-permeation liquid chromatography, formation of the enzyme-Mn(II)-phenanthroline complex results in loss of the tetrameric structure of the enzyme. From atomic-absorption measurements, inactivation by 1,10-phenanthroline also causes some loss of Mn(II) from the enzyme. It is concluded that the Mn(II) atom does not participate directly in the reaction mechanism, but may play a structural role essential to the integrity of the enzyme's tetrameric structure.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献