Iron requirement for cellular DNA damage and growth inhibition by hydrogen peroxide and bleomycin

Author:

Radtke K1,Lornitzo F A1,Byrnes R W1,Antholine W E2,Petering D H1

Affiliation:

1. Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, U.S.A.

2. Medical College of Wisconsin, Milwaukee, WI 53226, U.S.A.

Abstract

Studies with Euglena gracilis and HL-60 cells have assessed the need for intracellular iron in the mechanisms of inhibition of cell growth and DNA damage by H2O2 and bleomycin. Cell culture media were directly depleted of iron in order to deprive cells of nutrient iron. Major pools of cellular iron were reduced in both cell types. Nevertheless, iron bound in e.s.r.-observable haem protein and ribonucleotide diphosphate reductase in HL-60 cells was not decreased. In both control cell populations, there was a concentration-dependent reduction in proliferation and cell survival caused by H2O2. In comparison, the proliferation rates of both iron-deficient cell types were significantly less sensitive to H2O2. H2O2 caused concentration-dependent single-strand breakage in DNA in control HL-60 and Euglena gracilis cells. Iron deficiency reduced the amount of strand breaks in HL-60 cells at each concentration of H2O2 used. Single-strand breakage caused by H2O2 in Euglena gracilis was a direct function of the concentration of iron in which the cells had been grown. Growth inhibition and both single- and double-strand DNA damage caused by bleomycin were substantially reduced or eliminated in iron-deficient cells. Copper bleomycin behaved like metal-free bleomycin when assayed for the capacity to cause DNA damage in iron-normal and iron-deficient HL-60 cells. In contrast, iron bleomycin was equally active under the two conditions in these cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3