ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2

Author:

JEDLITSCHKY Gabriele1,LEIER Inka1,BUCHHOLZ Ulrike1,HUMMEL-EISENBEISS Johanna1,BURCHELL Brian2,KEPPLER Dietrich1

Affiliation:

1. Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, In Neuenheimer Feld 280, D-69120 Heidelberg, Federal Republic of Germany

2. Department of Molecular and Cellular Pathology, University of Dundee, Dundee DD1 9SY, Scotland, U.K.

Abstract

Bilirubin is secreted from the liver into bile mainly as monoglucuronosyl and bisglucuronosyl conjugates. We demonstrate for the first time that ATP-dependent transport of both bilirubin glucuronides is mediated by the multidrug resistance protein (MRP1) as well as by the distinct canalicular (apical) isoform MRP2, also termed cMRP or cMOAT (canalicular multispecific organic anion transporter). In membrane vesicles from MRP1-transfected HeLa cells mono[3H]glucuronosylbilirubin and bis[3H]glucuronosylbilirubin (each at 0.5 μM) were transported with rates of 5.3 and 3.1 pmol/min per mg of protein respectively. Rat hepatocyte canalicular membrane vesicles, which contain Mrp2 (the rat equivalent of MRP2), transported mono[3H]glucuronosylbilirubin and bis[3H]glucuronosylbilirubin at rates of 8.9 and 8.5 pmol/min per mg of protein, whereas membrane vesicles from mutant liver lacking Mrp2 showed no transport of the conjugates. In membrane vesicles from human hepatoma Hep G2 cells, which predominantly expressed MRP2, transport rates were 8.3 and 4.4 pmol/min per mg of protein for monoglucuronosylbilirubin and bisglucuronosylbilirubin respectively. ATP-dependent transport of the glutathione S-conjugate [3H]leukotriene C4, an established high-affinity substrate for MRP1 and MRP2, was inhibited by both bilirubin glucuronides with IC50 values between 0.10 and 0.75 μM. The ratios of leukotriene C4 transport and bilirubin glucuronide transport, determined in the same membrane vesicle preparation, indicated substrate specificity differences between MRP1 and MRP2 with a preference of MRP2 for the glucuronides.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 258 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3