Characterization and expression of human bifunctional 3′-phosphoadenosine 5′-phosphosulphate synthase isoforms

Author:

FUDA Hirotoshi1,SHIMIZU Chikara1,LEE Young C.1,AKITA Harukuni1,STROTT Charles A.1

Affiliation:

1. Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, U.S.A.

Abstract

Sulphonation, a fundamental process essential for normal growth and development, requires the sulphonate donor molecule 3′-phosphoadenosine 5′-phosphosulphate (PAPS), which is produced from ATP and inorganic sulphate by the bifunctional enzyme PAPS synthase. In humans, two genes encode isoenzymes that are 77% identical at the amino acid level, and alternative splicing creates two subtypes of PAPS synthase 2. The question as to whether distinctions in amino acid composition are reflected in differences in activity has been examined. The specific activity of the PAPS synthase 2 subtypes is 10- to 15-fold higher than that for PAPS synthase 1. The greater catalytic efficiency of the PAPS synthase 2 subtypes is demonstrated further by the 3- to 6-fold higher kcat/Km ratios for ATP and inorganic sulphate as compared with the ratios for PAPS synthase 1. In humans, PAPS synthase 1 is expressed ubiquitously, and is the dominant isoform in most tissues, whereas expression of the PAPS synthase 2 subtypes is variable and tissue-specific. It is noteworthy that, similar to other human tissues, PAPS synthase 1 also appears to be the dominant isoform expressed in cartilage. The latter finding initially created a conundrum, since there is a specific human dwarfing disorder that is known to be caused by a mutation in the PAPS synthase 2 gene. This apparent enigma would seem to be resolved by examination of cartilage from guinea-pigs as an animal model. Similar to humans, cartilage from mature animals predominantly expresses PAPS synthase 1. In contrast, expression of PAPS synthase 1 is relatively low in the cartilage of immature guinea-pigs, including the growth plate of long bones, whereas PAPS synthase 2 is the highly expressed isoenzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3