Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism

Author:

MADEN B. Edward H.1

Affiliation:

1. School of Biological Sciences, University of Liverpool, Life Sciences Building, Crown Street, Liverpool L69 7ZB, U.K.

Abstract

In most organisms, tetrahydrofolate (H4folate) is the carrier of C1 fragments between formyl and methyl oxidation levels. The C1 fragments are utilized in several essential biosynthetic processes. In addition, C1 flux through H4folate is utilized for energy metabolism in some groups of anaerobic bacteria. In methanogens and several other Archaea, tetrahydromethanopterin (H4MPT) carries C1 fragments between formyl and methyl oxidation levels. At first sight H4MPT appears to resemble H4folate at the sites where C1 fragments are carried. However, the two carriers are functionally distinct, as discussed in the present review. In energy metabolism, H4MPT permits redox-flux features that are distinct from the pathway on H4folate. In the reductive direction, ATP is consumed in the entry of carbon from CO2 into the H4folate pathway, but not in entry into the H4MPT pathway. In the oxidative direction, methyl groups are much more readily oxidized on H4MPT than on H4folate. Moreover, the redox reactions on H4MPT are coupled to more negative reductants than the pyridine nucleotides which are generally used in the H4folate pathway. Thermodynamics of the reactions of C1 reduction via the two carriers differ accordingly. A major underlying cause of the thermodynamic differences is in the chemical properties of the arylamine nitrogen N10 on the two carriers. In H4folate, N10 is subject to electron withdrawal by the carbonyl group of p-aminobenzoate, but in H4MPT an electron-donating methylene group occurs in the corresponding position. It is also proposed that the two structural methyl groups of H4MPT tune the carrier's thermodynamic properties through an entropic contribution. H4MPT appears to be unsuited to some of the biosynthetic functions of H4folate, in particular the transfer of activated formyl groups, as in purine biosynthesis. Evidence bearing upon whether H4MPT participates in thymidylate synthesis is discussed. Findings on the biosynthesis and phylogenetic distribution of the two carriers and their evolutionary implications are briefly reviewed. Evidence suggests that the biosynthetic pathways to the two carriers are largely distinct, suggesting the possibility of (ancient) separate origins rather than divergent evolution. It has recently been discovered that some eubacteria which gain energy by oxidation of C1 compounds contain an H4MPT-related carrier, which they are thought to use in energy metabolism, as well as H4folate, which they are thought to use for biosynthetic reactions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3