Affiliation:
1. Department of Biochemistry, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, U.S.A.
2. Department of Surgery, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, U.S.A.
Abstract
The basal activity of human placental glucocerebrosidase is elevated 16-fold by n-pentanol when assayed using p-nitrophenyl beta-D-glucopyranoside (pNPGlc) as the beta-glucosidase substrate. This enhancement of activity is the result of the formation of a transglucosylation product, n-pentyl beta-D-glucoside, in rate-determining competition with the hydrolytic reaction. The transglucosylation product accounts for approximately 80% of the reaction product generated in the presence of n-pentanol (0.18 M) when either glucocerebroside or pNPGlc was used as the substrate. This stimulatory effect can be increased an additional 3-fold by the inclusion of phosphatidylserine (20 micrograms/ml) or sodium taurodeoxycholate (0.3%, w/v) in the incubation medium. In the presence of retinol, glucocerebrosidase also catalyses the synthesis of a novel lipid glucoside, retinyl glucoside, when either glucocerebroside or pNPGlc serves as the substrate. The reaction product was identified as retinyl beta-D-glucoside, based on its susceptibility to hydrolysis by almond beta-D-glucosidase and the subsequent release of equimolar amounts of retinol and glucose. The rate of retinyl-beta-glucoside formation is dependent on the concentration of retinol in the incubation medium, reaching saturation at approximately 0.3 mM retinol. Retinyl beta-D-glucoside is a substrate for two broad-specificity mammalian beta-glucosidases, namely the cytosolic and membrane-associated beta-glucosidases of guinea pig liver. However, retinyl beta-D-glucoside is not hydrolysed by placental glucocerebrosidase. These data indicate that the glucocerebrosidase-catalysed transfer of glucose from glucocerebroside to natural endogenous lipid alcohols, followed by the action of a broad-specificity beta-glucosidase on the transglucosylation product, could provide mammals with an alternative pathway for the breakdown of glucocerebroside to glucose and ceramide.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献