Proteoglycans synthesized by an osteoblast-like cell line (UMR 106-01)

Author:

McQuillan D J1,Findlay D M2,Hocking A M1,Yanagishita M3,Midura R J3,Hascall V C3

Affiliation:

1. Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, 3052, Australia.

2. Institute of Medical Research, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia

3. Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892, U.S.A.

Abstract

The proteoglycans synthesized by an osteoblast-like cell line of rat origin (UMR 106-01) were defined after biosynthetic labelling with [35S]sulphate and [3H]glucosamine. Newly synthesized labelled proteoglycans were characterized by differential enzymic digestion in combination with analytical gel filtration and SDS/PAGE. UMR 106-01 cells were found to synthesize three major species of proteoglycan: a large chondroitin sulphate proteoglycan of Mr approximately 1 x 10(6), with a core protein of Mr approximately 350,000-400,000; a small chondroitin sulphate-containing species of Mr approximately 120,000 with a core protein of Mr 43,000; and a heparan sulphate proteoglycan of Mr approximately 150,000, with a core protein of Mr approximately 80,000. Over 70% of the newly synthesized intact proteoglycan species are associated with the cell layer of near-confluent cells; however, accessibility to trypsin digestion suggests an extracellular location. Chemical characteristics of the proteoglycans and preliminary mRNA hybridization indicate that the small chondroitin sulphate proteoglycan is probably PG II (decorin). The large chondroitin sulphate proteoglycan is most likely related to a hyaluronate-aggregating species from fibroblasts (versican), and the heparan sulphate proteoglycan bears striking similarities to cell-membrane-intercalated species described for a number of cell types.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3