Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins

Author:

Takagi J.1

Affiliation:

1. Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract

Since the discovery of the RGD sequence motif as the essential cell attachment site in Fn (fibronectin), RGD-dependent ligand recognition by integrins has been the major focus of many integrin researches. Although many integrins recognize RGD-containing ligands, it is believed that residues outside the RGD motif provide specificity as well as high affinity for each integrin–ligand pair. These ‘secondary’ sites are generally assumed to interact directly with the α subunit of integrin, whereas the RGD motif binds primarily to the β subunit. This necessitates that the integrin–ligand interface comprises a relatively large, or even scattered, area. Molecular electron microscopy and single-particle analysis were performed on a headpiece fragment of integrin α5β1 in the presence and absence of bound ligand (Fn fragment), and revealed a marked shape change of the β subunit hybrid and I-like domains that is linked with the ligand docking. Furthermore, electron microscopy images revealed a focal rather than a large contact area at the α5β1–Fn interface, raising a question about ‘2-site docking model’. Kinetic analysis of real-time binding data showed that the synergy site greatly enhances kon but has little effect on the stability or koff of the complex, suggesting that the synergy site exerts its positive effect on α5β1 binding by facilitating the initial encounter, rather than by contributing to the protein–protein interaction surface. Thus the ligand recognition mechanism by integrins needs further refinement through more structural analyses of the complexes as well as kinetic analysis of binding data.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3