Enhanced cell-surface stability of rescued ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) by pharmacological chaperones

Author:

Varga Karoly12,Goldstein Rebecca F.12,Jurkuvenaite Asta12,Chen Lan23,Matalon Sadis23,Sorscher Eric J.24,Bebok Zsuzsa12,Collawn James F.12

Affiliation:

1. Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A

2. The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A.

3. Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A

4. Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, U.S.A.

Abstract

Misfolded proteins destined for the cell surface are recognized and degraded by the ERAD [ER (endoplasmic reticulum) associated degradation] pathway. TS (temperature-sensitive) mutants at the permissive temperature escape ERAD and reach the cell surface. In this present paper, we examined a TS mutant of the CFTR [CF (cystic fibrosis) transmembrane conductance regulator], CFTR ΔF508, and analysed its cell-surface trafficking after rescue [rΔF508 (rescued ΔF508) CFTR]. We show that rΔF508 CFTR endocytosis is 6-fold more rapid (∼30% per 2.5 min) than WT (wild-type, ∼5% per 2.5 min) CFTR at 37 °C in polarized airway epithelial cells (CFBE41o−). We also investigated rΔF508 CFTR endocytosis under two further conditions: in culture at the permissive temperature (27 °C) and following treatment with pharmacological chaperones. At low temperature, rΔF508 CFTR endocytosis slowed to WT rates (20% per 10 min), indicating that the cell-surface trafficking defect of rΔF508 CFTR is TS. Furthermore, rΔF508 CFTR is stabilized at the lower temperature; its half-life increases from <2 h at 37 °C to >8 h at 27 °C. Pharmacological chaperone treatment at 37 °C corrected the rΔF508 CFTR internalization defect, slowing endocytosis from ∼30% per 2.5 min to ∼5% per 2.5 min, and doubled ΔF508 surface half-life from 2 to 4 h. These effects are ΔF508 CFTR-specific, as pharmacological chaperones did not affect WT CFTR or transferrin receptor internalization rates. The results indicate that small molecular correctors may reproduce the effect of incubation at the permissive temperature, not only by rescuing ΔF508 CFTR from ERAD, but also by enhancing its cell-surface stability.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3