Suppression of adipogenesis by valproic acid through repression of USF1-activated fatty acid synthesis in adipocytes

Author:

Yuyama Miki1,Fujimori Ko1

Affiliation:

1. Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan

Abstract

VPA (valproic acid), a short-chain fatty acid that is a HDAC (histone deacetylase) inhibitor, is known to suppress adipogenesis. In the present study, we identified the molecular mechanism of VPA-mediated suppression of adipogenesis in adipocytes. VPA suppressed the accumulation of intracellular triacylglycerol. The expression levels of PPARγ (peroxisome-proliferator-activated receptor γ) and C/EBPα (CCAAT/enhancer-binding protein α), which are key regulators of adipogenesis, as well as the expression of SCD (stearoyl-CoA desaturase), were decreased by the treatment with VPA. Moreover, glycerol release was decreased in the VPA-treated cells, even though the transcription levels of ATGL (adipose triacylglycerol lipase), HSL (hormone-sensitive lipase) and MGL (monoacylglycerol lipase), all of which are involved in lipolysis, were elevated by the treatment with VPA. It is noteworthy that the expression level of FAS (fatty acid synthase) was significantly suppressed when the cells were cultured in medium containing VPA. Furthermore, VPA-mediated suppression of the accumulation of the intracellular triacylglycerols was prevented by the treatment with palmitic acid, a major product of FAS. The results of promoter-luciferase and chromatin immunoprecipitation assays demonstrated that USF1(upstream stimulating factor 1) bound to the E-box of the promoter region of the FAS gene. In addition, the expression of USF1 was decreased by the treatment with VPA. siRNA-mediated knockdown of the expression of the USF1 gene repressed adipogenesis along with the decreased expression of the FAS gene. The overexpression of USF1 enhanced both adipogenesis and the expression of FAS in VPA-treated cells. These results indicate that VPA suppressed adipogenesis through the down-regulation of USF1-activated fatty acid synthesis in adipocytes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference53 articles.

1. Adipose tissue as an endocrine organ;Kershaw;J. Clin. Endocrinol. Metab.,2004

2. Obesity and the regulation of energy balance;Spiegelman;Cell,2001

3. The metabolic syndrome and adipocytokines;Matsuzawa;FEBS Lett.,2006

4. Adipose tissue, inflammation, and cardiovascular disease;Berg;Circ. Res.,2005

5. Epigenetic therapy of cancer: past, present and future;Yoo;Nat. Rev. Drug Discov.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3