Transgenic expression of human matrix metalloproteinase-1 attenuates pulmonary arterial hypertension in mice

Author:

George Joseph1,Sun Jie1,D'Armiento Jeanine1

Affiliation:

1. Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, U.S.A.

Abstract

PAH (pulmonary arterial hypertension) is a debilitating and life-threatening disease, often affecting young people. We specifically expressed human MMP-1 (matrix metalloproteinase-1) in mouse macrophages and examined its effects in attenuating the decompensating features of MCT (monocrotaline)-induced PAH. Measurement of RV (right ventricular) pressure revealed a 2.5-fold increase after treatment with MCT, which was reduced to 1.5-fold in MMP-1 transgenic mice. There was conspicuous pulmonary inflammation with chronic infiltration of mononuclear cells after the administration of MCT, which was significantly diminished in transgenic mice. Furthermore, transgenic mice showed decreased collagen deposition compared with WT (wild-type). Staining for Mac-3 (macrophage-3) and α-SMA (α-smooth muscle actin) revealed extensive infiltration of macrophages and medial hypertrophy of large pulmonary vessels with complete occlusion of small arteries respectively. These changes were markedly reduced in MMP-1 transgenic mice compared with WT. Western blotting for molecules involved in cell multiplication and proliferation depicted a significant decrease in the lung tissue of transgenic mice after the treatment with MCT. In conclusion, the present study demonstrated that transgenic expression of human MMP-1 decreased proliferation of smooth muscle cells and prevented excessive deposition of collagen in the pulmonary arterial tree. Our results indicate that up-regulation of MMP-1 could attenuate the debilitation of human PAH and provide an option for therapeutic intervention.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3