Peroxynitrite-mediated formation of free radicals in human plasma: EPR detection of ascorbyl, albumin-thiyl and uric acid-derived free radicals

Author:

VÁSQUEZ-VIVAR Jeannette1,SANTOS Alexandre M.1,JUNQUEIRA Virginia B. C.1,AUGUSTO Ohara1

Affiliation:

1. Department of Biochemistry, Instituto de Química, Universidade de São Paulo, C.P. 26.077, 05599-970, São Paulo, S.P., Brazil

Abstract

Formation of peroxynitrite by the fast reaction between nitric oxide and superoxide anion may represent a critical control point in cells producing both species, leading to either down-regulation of the physiological effects of superoxide anion and nitric oxide by forming an inert product, nitrate, or to potentiation of their toxic effects by oxidation of nearby molecules by peroxynitrite. (The term peroxynitrite is used to refer to the sum of all possible forms of peroxynitrite anion and peroxynitrous acid unless otherwise specified.) In this report we demonstrate that, in spite of all the antioxidant defences present in human plasma, its interaction with peroxynitrite leads to generation of free radical intermediates such as (i) the ascorbyl radical, detected by direct EPR, (ii) the albumin-thiyl radical, detected by spin-trapping experiments with both N-tert-butyl-α-phenylnitrone and 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and (iii) a uric acid-derived free radical, detected as the DMPO radical adduct in plasma whose thiol groups were previously blocked with 5,5-dithiobis-(2-nitrobenzoic acid). The identity of the latter adduct was confirmed by parallel experiments demonstrating that it is not detectable in plasma pretreated with uricase, whereas it is formed in incubations of peroxynitrite with uric acid. Peroxynitrite-mediated oxidations were also followed by oxygen consumption and ascorbate and plasma-thiol depletion. Our results support the view that peroxynitrite-mediated one-electron oxidation of biomolecules may be an important event in its cytotoxic mechanism. In addition, the data have methodological implications by providing support for the use of EPR methodologies for monitoring both free radical reactions and ascorbate concentrations in biological fluids.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3