Affiliation:
1. Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, U.S.A.
2. The Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
3. The Laboratory of Bioinformatics, Institute of Molecular Biology and the Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland
Abstract
TbSMT [Trypanosoma brucei 24-SMT (sterol C-24-methyltransferase)] synthesizes an unconventional 24-alkyl sterol product set consisting of Δ24(25)-, Δ24(28)- and Δ25(27)-olefins. The C-methylation reaction requires Si(β)-face C-24-methyl addition coupled to reversible migration of positive charge from C-24 to C-25. The hydride shifts responsible for charge migration in formation of multiple ergostane olefin isomers catalysed by TbSMT were examined by incubation of a series of sterol acceptors paired with AdoMet (S-adenosyl-L-methionine). Results obtained with zymosterol compared with the corresponding 24-2H and 27-13C derivatives revealed isotopic-sensitive branching in the hydride transfer reaction on the path to form a 24-methyl-Δ24(25)-olefin product (kinetic isotope effect, kH/kD=1.20), and stereospecific CH3→CH2 elimination at the C28 branch and C27 cis-terminal methyl to form Δ24(28) and Δ25(27) products respectively. Cholesta-5,7,22,24-tetraenol converted into ergosta-5,7,22,24(28)-tetraenol and 24β–hydroxy ergosta-5,7,23-trienol (new compound), whereas ergosta-5,24-dienol converted into 24-dimethyl ergosta-5,25(27)-dienol and cholesta-5,7,24-trienol converted into ergosta-5,7,25(27)trienol, ergosta-5,7,24(28)-trienol, ergosta-5,7,24-trienol and 24 dimethyl ergosta-5,7,25(27)-trienol. We made use of our prior research and molecular modelling of 24-SMT to identify contact amino acids that might affect catalysis. Conserved tyrosine residues at positions 66, 177 and 208 in TbSMT were replaced with phenylalanine residues. The substitutions generated variable loss of activity during the course of the first C-1-transfer reaction, which differs from the corresponding Erg6p mutants that afforded a gain in C-2-transfer activity. The results show that differences exist among 24-SMTs in control of C-1- and C-2-transfer activities by interactions of intermediate and aromatic residues in the activated complex and provide an opportunity for rational drug design of a parasite enzyme not synthesized by the human host.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献